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Motivation and Goals

Ideas for a long-term JPARC-Kamioka program: L = 295 km
e Phase 1: 0.75 MW protons, 22.5 kton fiducial detector (Super-K)
e Phase 2: x5 proton power, x20 fiducial mass (Hyper-K)

Fermilab-Kamioka: L = 9300 km

e How can you observe a signal with such a long baseline?
Matter effect = x20 amplification in .S (over max in vacuum)
x 20 improvement in S/N

e How does it complement the JPARC beam?
— May have best sensitivity to very small v, appearance.
— Matter effects resolve hierarchy: Normal or inverted
— Matter-amplified signal is mainly CP-conserving atmospheric component
= Use to separate CP-violating component seen with JPARC beam

Can we make a strong case for Phase 2 before sin?(26;3) is known?
Yes, if sensitive to maximal CP violation for a wide range of parameters.
Goal: 30 sensitivity to maximal CP violation for sin*(20;3) > 1073,
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CP Asymmetry at the peak of the atmospheric oscillation

e Matter effects not included

e Solid line 1s for default
parameters:

sin”(2613) variable

AM? 3.5 x 1073 eV?
Am? 5.0 x 107° eV?
sin®(26093) 1.0

Sin2(2912) 0.8

0 /2

P(CP-odd)/P(CP-even)

e Dashed line has
Am? =2 x 107% eV?




Leading oscillations: eL = 9300 km, esin’(26;3) = 0.01
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Beamline design

We start from the following observations:

1. Large matter effects occur at a particular resonant energy.

2. Most backgrounds “feed-down” from F, to lower E.s.

These lead to the following design principles:

1. Tune the spectrum to the resonant energy of the matter effect.

2. Aim for a “sawtooth” spectrum shape, with sharp cut-off at high E.
We start with the NuMI design and make the following modifications:
1. 2 MW of proton power at 60 GeV (assumes linac proton driver)

2. Target /horn configuration producing peak in spectrum at 10 GeV.
3. Dipole bend after 2nd horn: 0.5° for 20 GeV pions.

Steve Geer has started work on the layout (nextpage).
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Results from pbeam simulation

1 |
Solid line: v, CC interactions
= 08 | assuming no oscillations.
-~ Dashed line: With oscillations
E\ 2nd disappearance max occurs
= 06 | at peak!
S
z .
E 04 | T he following factors are
S A included:
> -
L 05 - e Scale up by 1.25 to agree
8 ' i with Geant results.
| i '".  :"; 4 . e Efficiency of tunnel is 37%
S 0t S IO IS s e o e emeer .
0072 4 6 8 10 12 14 16 18 20 relative to NuMl

(GeV)



Signal selection: Find one EM ring with energy E
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Neutral-current background
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Comparison of S and NC for sin®(2613) = 0.01 (leading)
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Neutrino direction information has not yet been used.
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Other backgrounds

o v, CC events. Reject events with a muon.
Miss muon in high-y events.
However, most v, have disappeared.
= Assume negligeable.

e . CC events.
Cross-section is 8% compared to v,.
BR(T — evr) = 18%.
Missing energy = Feeds down.
Assume negligeable.

e Intrinsic v,
Signal region is narrow part of spectrum.
Dipole bend helps reduce source from neutral kaons.
= Should be very small.
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Summary of signal and background rates

Normalized to sin?(26;3) = 0.01 and leading terms only.

JPARC phase 1:
e S = (.11 events/kton-year (0.55 in phase 2).
o f5 = 051%

Fermilab:

e S = 0.21 events/kton-year

o B — 25%
fp = 0.13% after scaling by matter amplification.
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Reach in sin®(2613)
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Upper curves: JPARC phase 1
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Solid curves: 10% systematic uncertainty on the background.
Dashed curves: no systematic uncertainty:.
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Constraints on CP violating phase with Hyper-K

We start with the following oscillation probability measurements which assume:
e Systematic uncertainty on B of 2% (JPARC) 5% (Fermilab).

e No flux uncertainty (it will need to be very well known for large sin®(26;3)).
e fp same for v and .

e 6 year JPARC 7 run equivalent to 2 year JPARC v run.

ye- sin®(26;3)
Beam ars 0.01 0.05 0.001
Fermi 2 0.104 £ 0.0060 0.501 £ 0.012 0.012 £ 0.0034
Fermi 8 | 0.104 4+ 0.0032 0.501 £ 0.0061 0.012 £ 0.0021
JPARC v | 2 [(7.940.37) - 1073 (3.2 4+ 0.052) - 1072 (1.5 +0.32) - 103
JPARC v| 8 |(7.9£0.25)-1073 (3.240.031) - 1072 (1.54£0.24) - 1073
JPARC 7| 6 | (2.8 +0.33) - 1073 (1.8 £ 0.044) - 1072 (0.0 £0.31) - 1073

= x? constraints in sin?(20;3) — & plane
(uncertainties on other parameters not yet included)
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Conclusions

Very long baseline experiments are potentially very useful, depending on:
e Size of sin*(20,3)
e Location of world’s largest detectors and most intense neutrino sources

e Readiness of neutrino factory
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